
© UK Electronics Skills Foundation, 2024

1

 Spark their Imagination 2024
Student Guide

This guide will introduce you to the Arduino microcontroller platform, the Grove Beginner Kit for

Arduino and basic programming skills. After completing this guide, you should have the confidence

and inspiration to undertake your own Electronics projects. Let’s start!

Contents
Introduction – What is Arduino?... 2

The Grove Beginner kit for Arduino .. 2

Interfacing with the Arduino .. 3

Saving your Sketch ... 5

Debugging and Errors ... 5

Exercise 1 – Blinking an LED .. 6

Exercise 2 – Buzzing the Buzzer ... 7

Tutorial - Serial Communication and Talking to your Computer ... 8

Exercise 3 – The Accelerometer .. 9

Exercise 4 – Combining it all ... 10

Open-Ended Design Challenge .. 14

Final Words and Further Resources .. 14

About the UK Electronics Skills Foundation ... 15

© UK Electronics Skills Foundation, 2024

2

Introduction – What is Arduino?
The Arduino is a microcontroller development platform aimed at people who want to use

programmable-electronic hardware without needing to delve deeply into how a microcontroller

operates. Figure 1 shows an original Arduino Uno board viewed from the top. The microcontroller

chip itself is the large black rectangle in the lower-left part of the board. It is a Microchip

ATmega328P and is the brains of the Arduino. Chips like this are also called integrated circuits, or

ICs, and can contain anywhere from a few thousand to billions of transistors. The rest of the Arduino

board includes the hardware necessary to power and program the board through USB and interface

to the inputs and outputs of the microcontroller (through the row of connectors on the side of the

board).

Figure 1. An Arduino UNO and its pins. The pin diagram has been simplified for the purposes of this guide. The full version is
available at bit.ly/3jg6PM2.

Apart from allowing an easy interface with external components, these connectors are designed so

that add-on printed circuit boards (PCBs) - often called shields - can be added. You can buy shields

for things like motor control, GPS, mobile telephony and more to allow projects to be constructed

quickly and with ease.

The Grove Beginner kit for Arduino
The board you will be using today is shown in Fig. 2 and looks slightly different than the original

Arduino Uno. It integrates the main microcontroller board called Seeduino Lotus sitting in the

middle, to several preconnected sensors and transducers on the side. The Seeduino Lotus is

essentially a modified Arduino Uno with a slightly different hardware interface but works exactly like

an Arduino board would. The nice thing about the kit is that it is self-contained, and you don’t need

to separate any of the sensor modules for them to work. You can connect to the sensors via the

four-pin connectors on the board (the white sockets) or simply program them directly through the

preconnected tracks on the printed circuit board or PCB.

 ro nd

 o e r

L

 nte r n l i n

 i n

 i i t l in

 n l o in

 t e r i n

 i cr ocont r ol le r s or t

 e l t

 L

L L

 L

 L

 o er

ic
ro
c

ip

e

https://www.microchip.com/wwwproducts/en/ATmega328P
https://www.microchip.com/wwwproducts/en/ATmega328P
https://bit.ly/3jg6PM2

© UK Electronics Skills Foundation, 2024

3

Figure 2. The Grove beginner kit for Arduino comprising of the Seeeduino Lotus and 10 peripherals. (Adapted from
bit.ly/2OSLrkZ)

Figure 3 shows an example of the PCB tracks that connect a sensor to the main board, so no cables

are required unless explicitly stated otherwise. Note however that once a sensor is broken out of the

big PCB (which you can do thanks to the small perforations in the board), the provided Grove cables

can be used to connect them back to the Seeeduino Lotus. We recommend leaving the peripherals

attached for this practical!

Figure 3. The PCB tracks, that go through the break-out points of the PCB and connect the peripherals to the Arduino. Thanks
to these, no cables are needed to use the peripherals.

Interfacing with the Arduino
There are two main types of input/output pins (I/O pins) on the Arduino and Seeduino Lotus boards:

- Digital I/O pins:
o Can have a value of either High (5V) or Low (0V).
o Connect to digital peripherals such as buttons, switches, displays and more.
o Are labelled 0 – 13 in the Arduino IDE and on the on the left connector of the

Seeduino Lotus board.
- Analogue I/O pins:

o Can work with continuous values between (and including) 5V and 0V.

https://bit.ly/2OSLrkZ

© UK Electronics Skills Foundation, 2024

4

o Connect to analogue peripherals such as potentiometers, light sensors, microphones
and more.

o Are labelled A0, A1, etc. In the Arduino IDE and as “ L ” at the top of the
right connector of the Seeduino Lotus board.

Another important way of interacting with the Arduino is serial communication which allows a

connection to more complex peripherals such as computer, Bluetooth, accelerometers and more.

We will investigate serial communication in Exercises 3 and 4.

The Arduino IDE and Sketch Template

Note: Please complete the steps to install the Arduino IDE and other components detailed in the

“ o t re nst ll tion” document before you start. If you are unsure whether Arduino is already

installed, please ask for help.

Let’s start by looking at the Arduino IDE and the empty “sketc ” te pl te ere yo ill rite yo r

code.

Figure 4. The Arduino IDE showing an empty sketch.

When you open the Arduino IDE for the first time, you should see the code for an empty program

with only the setup() and loop() functions defined. This is where you will fill in your code and is

referred to as sketch. A sketch is simply a text file that describes your program in the Arduino

language. More specifically:

- The setup() function describes what the Arduino needs to do once, like initialise a sensor,
or start a serial communication protocol to communicate with a computer or peripheral.

- The loop() function describes the things you want the Arduino to do repeatedly, in a loop.
Things like measure temperature, output a sound on the buzzer or display something on a
screen. This is where most of your code will go and can be considered the main program of
the Arduino.

© UK Electronics Skills Foundation, 2024

5

Saving your Sketch
Once you start writing code, it is recommended that you save your sketch to a convenient location

using the File > Save As… menu. The default location to save your sketches is usually

“ oc ents rd ino ” and is fine for our purposes.

Debugging and Errors
You can use the verify button in the Arduino IDE (see Fig. 4) to check if you have written your code

correctly and the upload button to upload the finished code to your board. If there are errors in your

code, the IDE will warn you and stop you from uploading it. You will instead need to work out the

cause(s) of the errors and “deb ” your code. Some common causes of errors/bugs are: spelling

errors, missing semi-colon(s) (;) at the end of code statements, undefined variables, and many

more... debugging can take time and patience is key!

Note: errors will be printed at the bottom of your Arduino IDE sketch environment, usually in red or

orange to highlight that there is an issue. However, the IDE does not always point you to the exact

line of the code where the error exists, and you may have to look through your code several times to

find the source of the error.

© UK Electronics Skills Foundation, 2024

6

Exercise 1 – Blinking an LED
Blinking an LED is a good “Hello orld” pro r for Arduino. It is a simple program that blinks a light

on and off and will introduce you to the development environment. It is also a good test to check

your connection to the hardware, as well as the hardware itself.

Step 1

In your empty sketch, before the setup() function, define the name and pin number of the LED you

will use (in our case, the rove kits’ red LED is connected to pin D4, and is written on the top left of

the Grove kit board). Therefore, we will define our LED pin to be digital pin number 4:

Step 2

In the setup() function (the code that runs only once) we need to declare whether the pin in

question should be an Input or an Output. In our case, we are going to drive the LED from the Grove

kit, which means our pin should be defined as an Output. We can do this with a function called

pinMode() as shown below:

Step 3

Next, in the loop() function we will define what we want our LED to do. Remember, this function

will run through the code we write in it repeatably, in a loop, forever. Since we want to blink the LED

we need to decide when it should turn on and off and for how long it should stay in each state. We

can implement this using a function called digitalWrite() which either turns the LED ON by

outputting a High voltage to our LED pin (i.e. 5V or a 1 state) or a Low voltage (i.e. 0V or 0 state). To

keep the LED in a state for some period of time we use the delay() function. This function tells the

program to wait for a certain amount of milliseconds before moving on to the next line of code.

These two functions result in the following code:

Step 4

Once you have completed the above code click the verify button and sort through any errors you

encounter. Ask for help if you need it. Once you are clear of errors, yo ’re re dy to plo d yo r

code. If you see your LED blink, congratulations! Yo ’ve ritten yo r irst orkin rd ino code.

const int ledPin = 4; //Define the name and pin number of the LED to blink

void setup() {

 pinMode(ledPin, OUTPUT); // Initialize the ledPin as an Output.

}

void loop() {

 digitalWrite(ledPin, HIGH); // Turn the LED on (High, 1, or 5V).

 delay(250); // Wait for 250 milliseconds.

 digitalWrite(ledPin, LOW); // Turn the LED off (Low, 0, or 0V).

 delay(250); // Wait for 250 milliseconds.

}

© UK Electronics Skills Foundation, 2024

7

Exercise 2 – Buzzing the Buzzer
In this exercise you will learn how to use the buzzer on the Grove kit. It sits next to the red LED and

our goal is to play a tone on it that stays on for one second and then off for one second.

Step 1

Launch a new sketch (save your old one and open a new one from File > New). Then, before the

setup() function, define the name and pin number the buzzer is connected to (D5 on the Grove kit)

as well as the frequency of the tone we wish to play:

Step 2

In the setup() function declare whether the buzzer is an input or an output. Since we want to play

a tone on the buzzer, we need to define the pin as an output:

Step 3

Next, in the loop() function let’s define the behaviour we want. We want to play a tone of 200 Hz

for 1s, then turn the buzzer off for 1s, and repeat. To play a tone on a buzzer the Arduino language

provides two functions: tone() and noTone(). They both need the pin number that the buzzer is

connected to as arguments, but the tone() function also needs the frequency of the tone to be

played. Our code will thus look as follows:

Step 4

Once you have completed the above code click the verify button and sort through any errors you

encounter. Call for help if you need it and finally upload your code.

Try changing the frequency of the tone, and the duration it is on and off to explore the different

sounds you can make.

const int buzzerPin = 5; //Define the name and pin number of the buzzer

const int toneFrequency = 200; //Frequency of tone in Hz

void setup() {

 pinMode(buzzerPin, OUTPUT); // Initialize the buzzerPin as an Output.

}

void loop() {

 tone(buzzerPin, toneFrequency); // Play a tone of 200 Hz on the buzzer

 delay(1000); // Wait for 1000 milliseconds or 1s.

 noTone(buzzerPin); // Turn the buzzer off.

 delay(1000); // Wait for 1000 milliseconds or 1s.

}

© UK Electronics Skills Foundation, 2024

8

Tutorial - Serial Communication and Talking to your Computer
So far, we have used the digital and analogue I/O’s to interface between our microcontroller and

sensors on the Grove kit. But how do we interact with more complex devices such as your computer

or more complex sensors like a digital accelerometer? The answer is serial communication.

Essentially, serial communication works by converting information to a stream of bits, which are

then sent between two devices over one or more wires.

The Serial family of functions in Arduino allow us to use the UART communication protocol to

communicate with a computer. To use these Serial functions, we need to begin a serial

communication protocol by using the function Serial.begin(9600). The value 9600 is called the

'baud rate' of the connection and defines how fast the data is to be sent. When using an Arduino

device you will encounter the begin() function often to initialise different peripherals and

communication protocols.

After beginning the serial protocol, you can use functions from the Serial family, such as

Serial.print() – which sends the text in the parentheses to the computer, and

Serial.println() – which does the same, but also starts a new line. Let’s test this functionality.

Type the below code into a new sketch and upload it. Then, in the Arduino IDE, go to Tools > Serial

Monitor (or click the looking glass icon in the top-right). This will open a new window showing the

message we sent from our board (see Fig. 5).

Try sending different messages using both, Serial.print() and Serial.println(), to get a

feeling of how they work.

Figure 5. A preview of the Serial Monitor tool in Arduino IDE 2.3.2, showing the “Hello, World!” message that was sent over
USB from the Arduino.

void setup() {

 Serial.begin(9600); // Begin the Serial communication.

 Serial.println("Hello, World!"); // Send a message to the computer.

 //You can add more print statements here

}

void loop() {} // For now, our loop() function does nothing.

https://en.wikipedia.org/wiki/Serial_communication

© UK Electronics Skills Foundation, 2024

9

Exercise 3 – The Accelerometer
In this exercise you will learn to how to read data from a 3-axis accelerometer and plot it as a graph

on the Arduino Serial Plotter. An accelerometer is a device that measures the rate of change of

velocity of a body. For example, an accelerometer at rest on the surface of Earth will measure the

 cceler tion d e to rt ’s r vity s 1 g (gravitational force equivalent) or approximately 9.81 m/s2.

 sin t e ccelero eter on t e rove kit, e c n e s re cceler tion in t ree xes. Let’s see o

to do that:

Step 1

First, before the setup() function, include the UKESF library (which will handle some of the

accelerometer functions for us) and de ine n ccelero eter v ri ble c lled “ y ccelero eter”:

Step 2

Next, begin (or initialise) Serial communication and the Accelerometer:

Step 3

Then in the loop() function, read the accelerometer values and print them to your serial monitor.

Note that we need to use floating point variables or float because the acceleration is given as a

decimal number.

Step 4

Finally, there are two ways you can view the data you read from the accelerometer. The first is using

the Serial monitor like you did before. The second is the Serial Plotter. You can access the plotter

from Tools > Serial Plotter. This is a very useful tool that plots the data for us in graph form. Try

tilting and turning your board to identify each of the three axes of the accelerometer.

#include <UkesfSixthFormers.h> // Include the UKESF library of functions

Accelerometer myAccelerometer; // Create an instance of the accelerometer

void setup() {

 Serial.begin(9600); // Begin the Serial communication.

 myAccelerometer.begin(); // Begin the Accelerometer.

}

void loop() {

 float x = myAccelerometer.readX(); // Read x-axis acceleration

 float y = myAccelerometer.readY(); // Read y-axis acceleration

 float z = myAccelerometer.readZ(); // Read z-axis acceleration

 Serial.print(x);

 Serial.print(" ");

 Serial.print(y);

 Serial.print(" ");

 Serial.println(z);

 delay(10); // Delay the program by 10ms for stability when looping

}

© UK Electronics Skills Foundation, 2024

10

Exercise 4 – Combining it all
In this exercise you will combine what you have learned in the previous three exercises into one

program that will implement a tilt sensor with a warning light and sound. Specifically, the program

should:

- Read data from the accelerometer.
- Calculate the pitch and roll (angles) of your board in degrees, based on that data.
- If the roll (or pitch) exceeds 20 degrees, light the LED and sound the buzzer.

This time, the code includes only the comments of what the program should include, and your task is

to fill them in. If you are unsure about any of the syntax or pin numbers, look back to exercises 1-3

for help.

Step 1

To start off we again need to include the UKESF library to access the accelerometer and define the

pin numbers and variables the program will use later. Fill in the missing lines of code before each

comment below:

Step 2

Next, initialise and begin the LED and buzzer, Serial communication and accelerometer.

Step 3

Finally, we implement the main program in the loop() function. In it, we want to do three things:

1) Read the accelerometer data
2) Calculate the roll and pitch
3) Light the LED and sound the buzzer IF the roll is > 20 degrees.

Let’s look t e c o t ese t sks in t rn.

// Include the UKESF library of functions

// Define the name and pin number of the LED

// Define the name and pin number of the buzzer

// Frequency of tone in Hz

// Create an instance of the accelerometer

void setup() {

 // Initialize the ledPin as an Output.

 // Initialize the buzzerPin as an Output.

 // Begin the Serial communication.

 // Begin the Accelerometer.

}

© UK Electronics Skills Foundation, 2024

11

1) Reading the accelerometer data.

Look back to exercise 3 for the code used to read data from the accelerometer and printing it out to

the Serial monitor. Although the program does not require us to print to Serial, it is a good idea to do

so for debugging purposes. We can then use the Serial monitor after uploading our code to sanity

check and make sure we are getting data from the accelerometer as we would expect.

2) Calculating roll and pitch from accelerometer data.

Pitch, roll and yaw are rotational forces (illustrated in Figure 6) and deriving them as angles from

accelerometer data is not a trivial task. However, to help us with the calculation se rc or “pitc

 nd roll rd ino” or “pitc nd roll ccelero eter” online and you will find many excellent resources

explaining how a 3-axis accelerometer can be used to derive pitch and roll. Two good explanations

are given by:

- DF Robot tutorial with quick derivation: https://wiki.dfrobot.com/How_to_Use_a_Three-
Axis_Accelerometer_for_Tilt_Sensing

- Application note from NXP with more rigorous derivation: https://www.nxp.com/files-
static/sensors/doc/app_note/AN3461.pdf

Figure 6. An illustration of pitch, roll and yaw of a linear system, in this case a rigid beam.

void loop() {

 // Read x-axis acceleration

 // Read y-axis acceleration

 // Read z-axis acceleration

 // Print the value to Serial for debugging help

}

https://wiki.dfrobot.com/How_to_Use_a_Three-Axis_Accelerometer_for_Tilt_Sensing
https://wiki.dfrobot.com/How_to_Use_a_Three-Axis_Accelerometer_for_Tilt_Sensing
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf

© UK Electronics Skills Foundation, 2024

12

While the complete derivation of the roll and pitch angles are too long to include in this document,

 e s est vin q ick re d t ro t e provided links to et n nderst ndin o t’s oin

on. The final equations are given below and require the use of pi, which in Arduino is written as

“ ”.

3) Light the LED and sound the buzzer if the roll is > 20 degrees.

Finally, we want to turn the LED on and sound the buzzer, but only if the roll or pitch angle (you can

choose!) is > 20 degrees in either direction (we must therefore use the absolute value function

abs()). To do this, we must include a conditional if-else statement in our code, which implements

the logical sequence illustrated by the flow diagram in Figure 7. The if-else statement tests an input

variable against a condition (i.e., is the angle > 20 degrees?) and takes the True or False path

depending on the result. When a condition is True, only the code inside the curly brackets enclosing

t e ‘i ’ st te ent is exec ted and en it is lse, t e ‘else’ st te ent is exec ted.

Figure 7. Flow diagram of an if-else statement in Arduino and the corresponding code. Depending on if the condition is True
or False different code gets executed and the rest is skipped.

void loop() {

 // Read x-axis acceleration

 // Read y-axis acceleration

 // Read z-axis acceleration

 // Print the value to Serial for debugging help

 //Calculate Roll and Pitch based on accelerometer data

 //See provided links for derivation.

 float roll = (atan2(-y, z)*180.0)/M_PI;

 float pitch = (atan2(x, sqrt(y*y + z*z))*180.0)/M_PI;

}

© UK Electronics Skills Foundation, 2024

13

Now that we understand if-else statements here is the complete code template for our program. Try

to complete it based on your previous work and ask for help if you need it.

void loop() {

 // Read x-axis acceleration

 // Read y-axis acceleration

 // Read z-axis acceleration

 // Print the value to Serial for debugging help

 //Calculate Roll and Pitch based on accelerometer data

 //See provided links for derivation.

 float roll = (atan2(-y, z)*180.0)/M_PI;

 float pitch = (atan2(x, sqrt(y*y + z*z))*180.0)/M_PI;

 //if-else statement to check if the roll is > 20 deg

 //Note the use of the absolute value abs()

 if(abs(roll) > 20){

 // Turn the LED on (High, 1, or 5V).

 // Play a tone of 200 Hz on the buzzer

 }

 else{

 // Turn the LED off (Low, 0, or 0V).

 // Turn the buzzer off.

 }

 delay(10); // Delay the program by 10ms for stability when looping

}

© UK Electronics Skills Foundation, 2024

14

Open-Ended Design Challenge

Well done on making it through the introduction to the Grove kit and Arduino IDE! You now have

enough experience to explore your own designs using the board.

This is where your personal creativity and curiosity come in to play and we will leave it up to you to

decide what you want to do, but here are some tips to get you started.

A good way to find inspiration is to search for ideas online. There are thousands of previous Arduino

projects on the web and often you can find something related to what you want to achieve. For

example, if you would like to play a song sin t e b zzer, se rc or “ rd ino pl y t ne on b zzer”

and you will find many examples. The tricky bit can be to discern which example is best suited to

your needs, or how exactly someone else’s code orks. ften this is a process of trial and error. You

could also combine bits and pieces of different code to make your own program. To get started with

this process we have collected some links and ideas below. You could for example:

- Play tunes using the buzzer (e.g. happy birthday). See this Arduino tutorial.

- Display custom text on the OLED screen based on sensor input. For example:
o Display text on the screen for different orientations of the board using the

accelerometer, expanding on the previous tilt sensor exercise.

- Use the microphone to pick up sound and inspect the audio waveform using the Serial
Plotter. Set a threshold to turn on the LED if the sound level is above the threshold.

- Use the push button to increment and display the number of times the button has been
pressed on the OLED screen. Here you could search online for “Arduino number of button
presses display” or tips on o to c ieve t is.

- Come up with your own project, create something new and make your ideas come to life. It
is immensely satisfying and the best part of Electronics. Have fun!

Final Words and Further Resources
We hope you had fun getting to know the Grove Beginner kit in this workshop! Creativity and

imagination lie at the heart of Electronics and there are many more resources to keep you going on

your own. Searching online for project ideas and inspiration is the best way to find out how to do

things and there is also a large community of forums and hubs where you can ask questions and get

help if you need it. Here is a short list of sites worth checking out:

- The Arduino homepage.
- The Arduino project hub.
- Seeedstudio’s guide for the Grove kit: Grove-Beginner-Kit-For-ArduinoPDF.
- Seeedstudio’s article with a collection of tutorials: Arduino Project Roundup.
- UKESF videos for the Grove kit: Introduction and Level meter project.
- Arduino projects on Instructables: https://www.instructables.com/Arduino-Projects/
- e rc or “your project idea + Arduino” nd yo ’ll ind tons o reso rces!

Thank you for participating in this workshop and good luck with your future Electronics projects!

https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody
https://www.arduino.cc/
https://create.arduino.cc/projecthub
https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf
https://www.seeedstudio.com/blog/2021/09/17/arduino-fun-projects-roundup-with-grove-kits-tutorials-reviews-and-community-feedback/
https://www.youtube.com/watch?v=KlTr9AzRSxw
https://www.youtube.com/watch?v=-rUaDQ3FNIg
https://www.instructables.com/Arduino-Projects/

© UK Electronics Skills Foundation, 2024

15

About the UK Electronics Skills Foundation
The purpose of the UKESF is to tackle the skills shortage in a coherent way. Our aim is to:

• With our partners, provide opportunities for them to develop their interest in

Electronics and engineering, through to university study and/or apprenticeship.

• At university, ensure that undergraduates are encouraged to pursue careers in the

Electronics sector, and they are supported in their professional development so when

they graduate, they are equipped with work-ready skills and experience.

• After graduation from university, we will help create a community of Electronics

engineers to secure the future pipeline. We will build relationships and act as the

representative voice for the sector on skills.

We are an independent charitable foundation, established in 2010, at the nexus of an extensive

network of partners and collaborators, including 27 universities and around 75 companies. On behalf

of the electronics sector, we will build relationships, provide thought leadership and act as the

representative voice on skills related matters.

Registered charity number: SC043940

www.ukesf.org

“Moving beyond talk about the skills shortage to take positive action is what

the UKESF is all about.”

Stew Edmondson, CEO, UKESF

http://www.ukesf.org/

