
© UK Electronics Skills Foundation, 2025

1

Girls into Electronics 2025
Student Guide

This guide will introduce you to the Arduino microcontroller platform, the Grove Beginner Kit for
Arduino and basic programming skills. This guide is designed to give you the skills and
confidence needed to undertake your own Electronics projects.

Contents
Introduction – What is Arduino? ... 2

The Grove Beginner Kit for Arduino .. 2

Arduino IDE – setting up and interface .. 4

Using the Desktop Arduino IDE .. 4

Using the Duino App website .. 5

Explaining setup() and loop() .. 5

Debugging and Errors ... 5

Exercises .. 6

Exercise 1 – Blinking an LED .. 6

Exercise 2 – Buzzing the Buzzer .. 8

Tutorial - Serial Communication and Talking to your Computer .. 9

Exercise 3 – The Accelerometer .. 10

Exercise 4 – Combining it all ... 11

Open-Ended Design Challenge .. 15

Final Words and Further Resources .. 15

Installing the Plug & Play demo .. 16

About the UK Electronics Skills Foundation .. 18

© UK Electronics Skills Foundation, 2025

2

Introduction – What is Arduino?
Arduino is an open-source platform used for building electronics projects. Arduino consists of
both a physical programmable circuit board called a microcontroller and a piece of software, or
IDE (Integrated Development Environment) that runs on your computer, used to write and
upload computer code to the physical board.

There are many Arduino microcontrollers, but they all work in a similar way. The most widely
used Arduino board is the Arduino Uno shown in Figure 1. We will use the Grove Beginner Kit for
Arduino.

The Grove Beginner Kit for Arduino
This kit has an Arduino board and a set of sensors, with some input and output devices
integrated into it.

If your box is sealed, it is recommended to use scissors to cut the seals on the front and the two
side compartments. The side compartments contain a micro-USB cable (to power the board)
on one side and 6 Grove cables (to link peripherals) on the other.

It is best, initially, to leave the board in the box.

Figure 2 labels all the attached devices. The microcontroller is the middle section that links to
all the devices around it. This is a modified Arduino Uno microcontroller.

Figure 1 Arduino Uno

Figure 2 Grove Beginner Kit for Arduino showing all the peripherals (Adapted from bit.ly/2OSLrkZ)

© UK Electronics Skills Foundation, 2025

3

Plug and Play Demo

The Grove Beginner Kit for Arduino comes with a plug and play demo.

NOTE: If your board no longer has this demo, it can be re installed. The instructions for this are
on p 15 (Installing and Uploading the Plug and Play Demo)

To run the demo, plug the board into your computer using the USB cable found in one of the
side compartments. The OLED display should light up with one of the sensor demos on display.

To move between the sensor demos use the button and the rotary potentiometer. Figure 3
shows the controls for the demo.

The sensors in the demo are:

o Acceleration : move the board in 3 axes to show this working
o Air Pressure
o Temperature & Humidity : place a hand over the sensors to change these readings
o Sound : clap over the sensor
o Light : use a phone torch on the sensor

Try out all the demo features to understand how the sensors work.

Figure 3 Controls for the demo

© UK Electronics Skills Foundation, 2025

4

Arduino IDE – setting up and interface
Important Note: Please complete the steps to install the appropriate Arduino IDE
for your operating system detailed in the “Software Installation” document before
starting.

The Arduino IDE is where the code is written and uploaded to the Arduino board.

You have two options:

• Using the Desktop Arduino IDE
• Using the Duino App website

Using the Desktop Arduino IDE
Create a new sketch (File  New Sketch). Figure 4 shows a new sketch and labels the
important features of the IDE.

Verify the syntax
of the code

Upload the code

Serial Monitor for
communication with
the Arduino

Editing pane where
code is written

Target Arduino and
COM Port

Output console for
error messages and

information

Figure 4 Desktop Arduino IDE Interface

© UK Electronics Skills Foundation, 2025

5

Using the Duino App website

Add in the following code to your sketch as shown in Error! Reference source not found. before
starting the exercises. Error! Reference source not found. also shows all the important features that

will be referred to in the following exercises.

 Explaining setup() and loop()

The setup() function describes what the Arduino needs to do once, for example, initialise a sensor
or start a serial communication protocol to communicate with a computer or peripheral.

The loop() function describes the things you want the Arduino to do repeatedly, in a loop. For
example, measure temperature, output a sound on the buzzer or display something on a screen.
This is where most of your code will go and can be considered the main program of the Arduino.

Debugging and Errors

You can use the verify button in the IDE to check if you have written your code correctly and the
upload button to upload the finished code to your board. If there are errors in your code, the IDE will
warn you and stop you from uploading it. You will instead need to work out the cause(s) of the
errors and “debug” your code. Some common causes of errors/bugs are: spelling errors, missing
semi-colon(s) (;) at the end of code statements or undefined variables but there are many more.
Debugging can take time and patience is key!

Note: errors will be printed at the bottom of your IDE, usually in red or orange to highlight that there
is an issue. However, the IDE does not always point you to the exact line of the code where the error
exists, and you may have to look through your code several times to find the source of the error.

Serial Monitor for
communication
with the Arduino

Target Arduino and
COM Port

Verify the syntax
of the code

Upload the code

Select Device to link
the hardware to
website

Figure 5 Duino App website interface

© UK Electronics Skills Foundation, 2025

6

Exercises
Exercise 1 – Blinking an LED

Blinking an LED is a simple program that blinks a light on and off and will introduce you to the
development environment. It is also a good test to check your connection to the hardware as well as
the hardware itself.

Step 1

In your empty sketch, before the setup() function, define the name and pin number of the LED you
will use (in our case, the Grove kits’ red LED is connected to pin D4, and is written on the top left of
the Grove kit board). Therefore, we will define our LED pin to be digital pin number 4:

Step 2

In the setup() function (the code that runs only once) we need to declare whether the pin in
question should be an Input or an Output. In our case, we are going to drive the LED from the Grove
kit, which means our pin should be defined as an Output. We can do this with a function called
pinMode() as shown below:

Step 3

Next, in the loop() function we will define what we want our LED to do. This function will run
through the code in a loop, forever. Since we want to blink the LED we need to decide when it
should turn on and off and for how long it should stay in each state. We can implement this using a
function called digitalWrite() which either turns the LED ON by outputting a High voltage to our
LED pin (i.e. 5V or a 1 state) or a Low voltage (i.e. 0V or 0 state). To keep the LED in a state for some
period of time we use the delay() function. This function tells the program to wait for a certain
number of milliseconds before moving on to the next line of code. These two functions result in the
following code:

Step 4

Once you have completed the above code click the verify button and sort through any errors you
encounter. Once you are clear of errors, you’re ready to upload your code.

Plug in the Arduino board to the USB port.

If using the Arduino IDE, click the drop-down menu in the top bar as shown in Figure 6. From here
choose “Select other board and port…”.

const int ledPin = 4; //Define the name and pin number of the LED to blink

void setup() {
 pinMode(ledPin, OUTPUT); // Initialize the ledPin as an Output.
}

void loop() {
 digitalWrite(ledPin, HIGH); // Turn the LED on (High, 1, or 5V).
 delay(250); // Wait for 250 milliseconds.
 digitalWrite(ledPin, LOW); // Turn the LED off (Low, 0, or 0V).
 delay(250); // Wait for 250 milliseconds.
}

© UK Electronics Skills Foundation, 2025

7

Figure 6 Arduino IDE – drop down menu

In the window that pops up make sure “Arduino Uno” is selected in the left hand box and the right
COM port is selected in the right hand port as in Figure 7.

Figure 7 Arduino IDE - Select board and port

OR if using the Duino App, click on “select device” at the bottom of the page. This will bring up a
window with the connections. Click on the connection as shown in Figure 8 and then click “Connect”.

Figure 8 Duino App - connections window

At the bottom right of the page, click on “Board” and choose “Arduino Uno”.

Upload the code to the Arduino by clicking the icon in the top right-hand corner.

If you see your LED blink, congratulations! You’ve written your first working Arduino code.

© UK Electronics Skills Foundation, 2025

8

Exercise 2 – Buzzing the Buzzer

In this exercise you will learn how to use the buzzer on the Grove kit (next to the red LED). This code
will play a tone on the buzzer that lasts one second and then pauses for one second before
repeating.

Step 1

Launch a new sketch. Before the setup() function, define the name and pin number the buzzer is
connected to (D5 on the Grove kit) and the frequency of the tone you wish to play:

Step 2

In the setup() function declare whether the buzzer is an input or an output. To play a tone on the
buzzer, the pin needs to be defined as an output:

Step 3

In the loop() function, define the actions for the buzzer, starting with a tone of 200 Hz for 1s, then
turn the buzzer off for 1s, and repeat. To play a tone on the buzzer the Arduino language provides
two functions: tone() and noTone(). They both need the pin number that the buzzer is connected
to as arguments, but the tone() function also needs the frequency of the tone to be played:

Step 4

Once you have completed the above code click the verify button and sort through any errors you
encounter before uploading your code.

Try changing the frequency and duration of the tone to explore the different sounds you can make.

const int buzzerPin = 5; //Define the name and pin number of the buzzer
const int toneFrequency = 200; //Frequency of tone in Hz

void setup() {
 pinMode(buzzerPin, OUTPUT); // Initialize the buzzerPin as an output.
}

void loop() {
 tone(buzzerPin, toneFrequency); // Play a tone of 200 Hz on the buzzer
 delay(1000); // Wait for 1000 milliseconds or 1s.
 noTone(buzzerPin); // Turn the buzzer off.
 delay(1000); // Wait for 1000 milliseconds or 1s.
}

© UK Electronics Skills Foundation, 2025

9

Tutorial - Serial Communication and Talking to your Computer

Serial communication works by converting information to a stream of bits, which are then sent
between two devices over one or more wires, allowing interaction with more complex devices such
as a laptop or sensors such as a digital accelerometer.

The Serial family of functions in Arduino allow use of the UART communication protocol to
communicate with a computer.

Serial protocol functions :-

Serial.begin(9600)- Initialises different peripherals and communication protocols. 9600 is the
'baud rate' of the connection. It defines how fast the data is to be sent.

Serial.print() – Sends the text in the parentheses to the computer.

Serial.println() – Sends the text in the parentheses to the computer and also starts a new line.

To test this functionality, type the below code into a new sketch and upload it.

If using the Arduino IDE, go to Tools > Serial Monitor (or click the looking glass icon in the top-right).
OR if using Duino, after uploading the code, click on the monitor tab and change the baud to 9600
(in bottom right hand corner).

This will open a new window showing the message sent from the board (see Figure 9).

Try sending different messages using both Serial.print() and Serial.println().

Figure 9 A preview of the Serial Monitor tool showing the “Hello, World!” message that was sent over USB from the Arduino

void setup() {
 Serial.begin(9600); // Begin the serial communication.
 Serial.println("Hello, World!"); // Send a message to the computer.
 //You can add more print statements here
}

void loop() {} // For now, our loop() function does nothing.

© UK Electronics Skills Foundation, 2025

10

Exercise 3 – The Accelerometer

In this exercise you will learn to how to read data from a 3-axis accelerometer and plot it as a graph
on the Arduino Serial Plotter. An accelerometer is a device that measures the rate of change of
velocity of a body. For example, an accelerometer at rest on the surface of Earth will measure the
acceleration due to Earth’s gravity as 1 g (gravitational force equivalent) or approximately 9.81 m/s2.
Using the accelerometer on the Grove kit, we can measure acceleration in three axes.

Step 1

Before the setup() function, include the UKESF library (which will handle some of the
accelerometer functions) and define an accelerometer variable called “myAccelerometer”:

Note: Make sure you followed the instructions in the software installation instructions to install the
UKESF library for the software you are using.

Step 2

Initialise serial communication and the accelerometer:

Step 3

In the loop() function, read the accelerometer values and print them to the serial monitor. Note
that floating point variables or float must be used because the acceleration is given as a decimal
number.

Step 4

There are two ways to view the data from the accelerometer. The first is using the serial monitor
and the second is the Serial Plotter. You can access the plotter from Tools > Serial Plotter. This is a
useful tool that plots the data in graph form. Try tilting and turning your board to identify each of
the three axes of the accelerometer.

#include <UkesfSixthFormers.h> // Include the UKESF library of functions

Accelerometer myAccelerometer; // Create an instance of the accelerometer

void setup() {
 Serial.begin(9600); // Begin the serial communication.
 myAccelerometer.begin(); // Begin the accelerometer.
}

void loop() {
 float x = myAccelerometer.readX(); // Read x-axis acceleration
 float y = myAccelerometer.readY(); // Read y-axis acceleration
 float z = myAccelerometer.readZ(); // Read z-axis acceleration
 Serial.print(x);
 Serial.print(" ");
 Serial.print(y);
 Serial.print(" ");
 Serial.println(z);
 delay(10); // Delay the program by 10ms for stability when looping
}

© UK Electronics Skills Foundation, 2025

11

Exercise 4 – Combining it all

In this exercise you will combine what you have learned in the previous three exercises into one
program, implementing a tilt sensor with a warning light and sound. Specifically, the program will:

- Read data from the accelerometer,
- Calculate the pitch and roll (angles) of your board in degrees, based on that data,
- If the roll (or pitch) exceeds 20 degrees, light the LED and sound the buzzer.

The examples of code given below include only the comments of what the program should include.
You will fill them in, using the syntax and pin numbers given exercises 1-3.

Step 1

Include the UKESF library to access the accelerometer and define the pin numbers and variables the
program will use later. Fill in the missing lines of code before each comment below:

Step 2

Initialise the LED, buzzer, serial communication and accelerometer.

Step 3

Implement the main program in the loop() function:

1) Read the accelerometer data
2) Calculate the roll and pitch
3) Light the LED and sound the buzzer IF the roll is > 20 degrees.

Approach each of these tasks in turn.

1) Read the accelerometer data

Look back to exercise 3 for the code used to read data from the accelerometer and print it to the
serial monitor. Although the program does not require printing to Serial, it is a good idea to do so for
debugging purposes, using the serial monitor after uploading our code to make sure the data from
the accelerometer is as we would expect.

// Include the UKESF library of functions

// Define the name and pin number of the LED
// Define the name and pin number of the buzzer
// Frequency of tone in Hz
// Create an instance of the accelerometer

void setup() {
 // Initialize the ledPin as an output.
 // Initialize the buzzerPin as an output.
 // Begin the serial communication.
 // Begin the accelerometer.
}

© UK Electronics Skills Foundation, 2025

12

2) Calculating roll and pitch from accelerometer data.

Pitch, roll and yaw are rotational forces (illustrated in Figure 10) and deriving them as angles from
accelerometer data is complicated. The links below give good explanations of how a 3-axis
accelerometer can be used to derive pitch and roll.

- DF Robot tutorial with quick derivation: https://wiki.dfrobot.com/How_to_Use_a_Three-
Axis_Accelerometer_for_Tilt_Sensing

- Application note from NXP with more rigorous derivation: https://www.nxp.com/files-
static/sensors/doc/app_note/AN3461.pdf

Figure 10 An illustration of pitch, roll and yaw of a linear system, in this case a rigid beam.

It is sensible to read through the information given in the provided links to get an understanding of
on the derivation of roll and pitch angles. The final equations are given below and require the use of
pi, which in Arduino is written as “M_PI”.

void loop() {
 // Read x-axis acceleration
 // Read y-axis acceleration
 // Read z-axis acceleration

 // Print the value to serial for debugging help
}

https://wiki.dfrobot.com/How_to_Use_a_Three-Axis_Accelerometer_for_Tilt_Sensing
https://wiki.dfrobot.com/How_to_Use_a_Three-Axis_Accelerometer_for_Tilt_Sensing
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf
https://www.nxp.com/files-static/sensors/doc/app_note/AN3461.pdf

© UK Electronics Skills Foundation, 2025

13

3) Light the LED and sound the buzzer if the roll is > 20 degrees.

To turn the LED on and sound the buzzer if the roll angle is > 20 degrees in either direction, the
absolute value function abs() must be used. To do this, use a conditional if-else statement to
implement the logical sequence illustrated by the flow diagram in Figure 11. The if-else statement
tests an input variable against a condition (i.e., is the angle > 20 degrees?) and takes the True or
False path depending on the result. When a condition is True, only the code inside the curly brackets
enclosing the ‘if’ statement is executed and when it is False, the ‘else’ statement is executed.

Figure 11 Flow diagram of an if-else statement in Arduino and the corresponding code. Depending on if the condition is True
or False different code gets executed and the rest is skipped.

Complete the code template below, based on your previous work.

void loop() {
 // Read x-axis acceleration
 // Read y-axis acceleration
 // Read z-axis acceleration

 // Print the value to serial for debugging help

 //Calculate roll and pitch based on accelerometer data
 //See provided links for derivation.
 float roll = (atan2(-y, z)*180.0)/M_PI;
 float pitch = (atan2(x, sqrt(y*y + z*z))*180.0)/M_PI;
}

© UK Electronics Skills Foundation, 2025

14

Experiment by changing your code to light the LED and sound the buzzer if the pitch is > 20 degrees

void loop() {
 // Read x-axis acceleration
 // Read y-axis acceleration
 // Read z-axis acceleration

 // Print the value to Serial for debugging help

 //Calculate roll and pitch based on accelerometer data
 //See provided links for derivation.
 float roll = (atan2(-y, z)*180.0)/M_PI;
 float pitch = (atan2(x, sqrt(y*y + z*z))*180.0)/M_PI;

 //if-else statement to check if the roll is > 20 deg
 //Note the use of the absolute value abs()
 if(abs(roll) > 20){
 // Turn the LED on (High, 1, or 5V).
 // Play a tone of 200 Hz on the buzzer
 }
 else{
 // Turn the LED off (Low, 0, or 0V).
 // Turn the buzzer off.
 }

 delay(10); // Delay the program by 10ms for stability when looping
}

© UK Electronics Skills Foundation, 2025

15

Open-Ended Design Challenge
Well done on completing the introduction to the Grove kit and Arduino IDE! You now understand
the basics and can explore your own designs using the board. Be creative and have fun!

A good way to find inspiration is to search for ideas online. There are thousands of previous Arduino
projects on the web and often you can find something related to what you want to achieve. For
example, if you would like to play a song using the buzzer, search for “Arduino play tune on buzzer”
and you will find many examples. It can be tricky to discern which example is best suited to your
needs or how someone else’s code works. Often this is a process of trial and error. You could also
combine parts of several different codes to make your own program. You could, for example:

- Play tunes using the buzzer. See this Arduino tutorial.

- Display custom text on the OLED screen based on sensor input. For example:
o Display text on the screen for different orientations of the board using the

accelerometer.

- Use the microphone to pick up sound and inspect the audio waveform using the Serial
Plotter. Set a threshold to turn on the LED if the sound level is above the threshold.

- Use the push button to increment and display the number of times the button has been
pressed on the OLED screen. Search online for “Arduino number of button presses display”
for tips.

Final Words and Further Resources
Creativity and imagination lie at the heart of Electronics and there are many more resources to
explore. As well as searching online for project ideas and, there is also a large community of forums
and hubs where you can ask questions and get help if you need it. Here are some suggestions:

- The Arduino homepage.
- The Arduino project hub.
- Seeedstudio’s guide for the Grove kit: Grove-Beginner-Kit-For-ArduinoPDF.
- Seeedstudio’s article with a collection of tutorials: Arduino Project Roundup.
- UKESF videos for the Grove kit: Introduction and Level meter project.
- Arduino projects on Instructables: https://www.instructables.com/Arduino-Projects/
- Search for “your project idea + Arduino” and you’ll find lots of resources!

Good luck with your future Electronics projects!

https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody
https://www.arduino.cc/
https://create.arduino.cc/projecthub
https://files.seeedstudio.com/wiki/Grove-Beginner-Kit-For-Arduino/res/Grove-Beginner-Kit-For-ArduinoPDF.pdf
https://www.seeedstudio.com/blog/2021/09/17/arduino-fun-projects-roundup-with-grove-kits-tutorials-reviews-and-community-feedback/
https://www.youtube.com/watch?v=KlTr9AzRSxw
https://www.youtube.com/watch?v=-rUaDQ3FNIg
https://www.instructables.com/Arduino-Projects/

© UK Electronics Skills Foundation, 2025

16

Installing the Plug & Play demo
To use the original plug and play demo, follow the instructions below to download and install the zip
file.

1) Go to: https://wiki.seeedstudio.com/Grove-Beginner-Kit-For-Arduino/#resources

2) Click on “5. Initial Arduino Firmware Demo” to download a zip file of the code and libraries

needed to run the initial demo code.

Figure 12 On the Seeed Arduino Grove kit wiki click the “Initial Arduino Firmware Demo” link to download the zip file which
contains the initial code and libraries.

3) Open your Arduino IDE and go to File  Preferences to check your sketchbook location

Figure 13 Sketchbook location: In your Arduino IDE, File  Preferences, check you Sketchbook location (you will need to
unzip the firmware zip file here).

https://wiki.seeedstudio.com/Grove-Beginner-Kit-For-Arduino/#resources

© UK Electronics Skills Foundation, 2025

17

4) Open the Sketchbook folder in a file explorer window.
5) Move the downloaded zip file from step 3 into this sketchbook folder and unzip it there. Once

done, you should have a folder called “Grove_Starter_Kit”.
a. If the “Grove_Starter_Kit” folder is still inside another folder, move it out so that your

sketchbook location looks like Figure 11.

Figure 14 Sketchbook folder: In your Sketchbook folder you should now have the unzipped folder called “Grove_Starter_Kit”
and a “libraries” folder (which is where all your Arduino libraries like the UKESF-Sixth-Formers library lives).

6) Your sketchbook folder also includes a “libraries” folder from before, as highlighted in Figure

11.
7) From the unzipped “Grove_Starter_Kit” folder, copy the highlighted folders in Figure 12.

across to your Sketchbook “libraries” folder (Note that you may already have a “U8g2” library
folder from before, in which case you can skip that one).

Figure 15 Copy the libraries across: included in the “Grove_Starter_Kit” folder are five libraries we need to copy into the
Arduino Sketchbook “libraries” folder (Note: you may already have a U8g2 library from before, in which case you can skip
that one or overwrite

8) After you have copied the folders across, you can double click the “Grove_Starter_Kit.ino” file

to open the Arduino code for the initial example and upload it to your Grove Kit board.

If you get any errors when trying to upload, please refer to the UKESF Guide and check that you have
chosen the correct COM port, Arduino Uno board type and AVRISP MKII programmer, also check
that the libraries you copied over from the zipped folder to your libraries folder were successful.

You can now edit and upload the original Example code for the board.

© UK Electronics Skills Foundation, 2025

18

About the UK Electronics Skills Foundation
The UKESF exists to encourage the pursuit of careers in electronics and support industry in
developing excellence in the sector. We do this through:

• Encouraging more young people to study Electronics by providing resources and experiences
to develop their interest

• Connecting the most capable students from leading universities with employers and
supporting their professional development to equip them with work-ready skills and
experience

• Skills advocacy on behalf of the Electronics industry, including apprenticeships and research
• Collaborating with industry partners and stakeholders to build relationships and secure the

future pipeline with a community of Electronics Engineers.

We are an independent charitable foundation, established in 2010, at the nexus of an extensive
network of partners and collaborators, including 30 universities and around 75 companies.

Registered charity number: SC043940

www.ukesf.org

“Moving beyond talk about the skills shortage to take positive action is what
the UKESF is all about.”

Stew Edmondson, CEO, UKESF

http://www.ukesf.org/

	Introduction – What is Arduino?
	The Grove Beginner Kit for Arduino
	Arduino IDE – setting up and interface
	Using the Desktop Arduino IDE
	Using the Duino App website
	Explaining setup() and loop()
	Debugging and Errors

	Exercises
	Exercise 1 – Blinking an LED
	Exercise 2 – Buzzing the Buzzer
	Tutorial - Serial Communication and Talking to your Computer
	Exercise 3 – The Accelerometer
	Exercise 4 – Combining it all

	Open-Ended Design Challenge
	Final Words and Further Resources
	Installing the Plug & Play demo
	About the UK Electronics Skills Foundation

